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Sample Problem Scope

This sample problem gives an illustration of the type of questions to be expected in the main
challenge. The challenge problem will resemble the logical �ow here, with a similar mix of
mathematics, modelling and computation. However, the subject matter, breadth and depth of
the challenge problem will be di�erent from this sample.
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Sample Challenge Problem

In this sample challenge, we investigate the dynamics of a catalytic reaction on a surface. We
would like to remove a harmful substance X from the atmosphere. A catalytic surface is used
for this purpose. The surface contains N total reaction sites. Each X molecule can adsorb onto
an empty site S to form a complex XS . The complex XS then di�uses quickly across the surface,
and when it meets another site complex a reaction may occur to produce X2, a harmless product.
This also frees the two sites, which will become available for adsorption afterwards. Figure 1.1
gives an illustration of this process.

Figure 1.1: Catalytic Reaction on a Surface.

We may also write the reaction equations as follows:

X + S −→ XS (1.1)
2XS −→ 2S + X2 (1.2)

1.1 A Stochastic Process Model

Let us �rst explore a stochastic model for this catalytic process. We index the observation
times by a discrete sequence t = 0,∆t , 2∆t , . . . , where ∆t > 0 is the time step. Let us denote by
NXS (t) the number of occupied sites (XS) at time t . The number of empty catalytic sites is thus
NS (t) = N − NXS (t).

In each time step t 7→ t + ∆t , exactly one of the following happens:
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• NXS increases by 1 due to adsorption of X onto the surface (Eq. (1.1)). This occurs
with probability proportional to NS = N − NXS . This is assuming that the ambient
concentration of X is held constant by a reservoir. Set this probability as P1 = a∆t(N −
NXS ), where a > 0 is a constant and ∆t is su�ciently small so that P1 < 1.

• If NXS ≥ 2, NXS decreases by 2 due to reaction of two occupied XS sites (Eq. (1.2)).

This occurs with probability proportional to
(
NXS
2

)
= 1

2NXS (NXS − 1), since this is a

bi-molecular reaction. Here, we are also assuming that the di�usion ofXS on the surface is
rapid, so that the system is well-mixed. We set this probability as P2 = 1

2b∆tNXS (NXS −1),
where b > 0 and ∆t is su�ciently small so that P2 < 1.

• Nothing happens, and NXS remains the same. This occurs with probability P3 = (1− P1 −
P2), and we assume that ∆t is su�ciently small so that P3 > 0.

(a) Write a programme to simulate the evolution of NXS (t) starting from the initial condition
NXS (0) = 0 and a = 1.5 × 10−3, b = 2.5 × 10−5, ∆t = 0.1, N = 100. Plot your simulation
results for NXS (t) up to t ≤ 10, for 5 separate runs.

(b) The steady state distribution for this process is the distribution of NXS (t) for large/in�nite
t . Equivalently, it is the distribution of NXS which does not change in time under the
process above. Plot an estimated steady-state distribution for NXS with parameter settings
in (a). You may use your simulation, or other means to compute this distribution.

(c) How does this distribution change as N is increased?

1.2 A Di�erential Equation Model

As seen previously, the stochastic process model may be unwieldly for analysis. A popular
alternative to model the kinetics of chemcial reactions is using di�erential equations. Instead of
the number of occupied sites, we can monitor the proportion of occupied sites c(t) = NXS (t)/N .
By taking the formal limit N →∞, we can regard c(t) as a real number. Moreover, we can take
∆t → 0, which gives rise to a continuous-time evolution model for c(t):

d

dt
c(t) = α(1 − c(t)) − βc(t)2, α , β > 0 (1.3)

The �rst term on the right hand side models reaction (1.1) and the second term models reac-
tion (1.2).

(a) Solve the equation (1.3) with initial condition c(0) = 0 and parameter values α = 0.3, β =
0.5. Either analytical or numerical solutions are accepted. Plot c(t) vs t for t ∈ [0, 10].

(b) Suppose we have an ambient sensor that monitors the concentration of the product
chemical X2 from reaction (1.2) as a function of time. Let us call this quantity cX2(t).
Suppose that we observe that cX2(t) approaches a straight line cX2(t) ≈ pt + q for large t ,
wherep,q > 0. Our goal is to estimate the constant α (related to the ambient concentration

4



of the harmful chemical X ) from this information, assuming the constant β is known.
Devise a method to do this.

1.3 Data-Driven Modelling of Reaction Mechanisms

For complex reactions, the reaction mechanism is often unknown. In this case, we can make
use of data-driven methods to model the evolution of a surface-catalysed reaction.

You are now provided with a dataset containing the following content (saved in JSON format):
data

train.txt
test.txt

The training data contains records from 50 simulated temporal trajectories of the following 3
quantities:

• cX (t): concentration of the harmful chemical X

• cXS (t): coverage of the catalytic surface by XS complex

• cX2(t): concentration of the harmless product chemical X2

The test dataset contains 10 unseen initial conditions of cX (0), cXS (0), cX2(0).

(a) Predict the trajectories of cX (t), cXS (t), cX2(t) starting from the initial conditions given in
the test dataset. You should explain clearly how your predictive model is built.

(b) Infer a likely catalytic reaction mechanism and explain how you arrived at it.
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