SOLUTION

1. Simplify the multiplication as follows:

$$
\begin{aligned}
& 2000 \times\left(1-\frac{1}{2}\right) \times\left(1-\frac{1}{3}\right) \times\left(1-\frac{1}{4}\right) \times \cdots \times\left(1-\frac{1}{100}\right) \\
& =2000 \times \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \cdots \times \frac{99}{100}=2000 \times \frac{1}{100}=20
\end{aligned}
$$

2. Since $2022=2 \times 3 \times 337, d(2022)=8$.

One sees that $X=102$ and $Y=1001$, i.e., $X+Y=1103$.
3. Since if Benny's age is doubled and Calvin's age is halved, both will be of the same age, Benny's current age : Calvin's current age $=1: 4$.
Let Benny's current age be 1unit, then Andy's current age is (2 units -7) and Calvin's current age is 4units. Hence,
$2 u-7+1 u+4 u=42 \times 3=126 \Rightarrow 7 u=133 \Rightarrow 1 u=19$
Thus, Calvin's current age is $4 \times 19=76$ years old.
4.

Join $A G$. Let $[A B C D]$ denote the area of the rectangle $A B C D$.
Since $A E=E B$ and $A F=F D$, let $[A E G]=[B E G]=m$ and $[A F G]=[D F G]=n$.
$[A F B]=\frac{1}{4}[A B C D]=[A E D] \Rightarrow m+2 n=n+2 m \Rightarrow m=n$.
Hence, area of non-shaded region is $\frac{4}{3} \times \frac{1}{2} \times(5 \times 6)=20 \mathrm{~cm}^{2}$.
The area of shaded region is $(3+3) \times(5+5)-20=40 \mathrm{~cm}^{2}$.
5.

Rest Days / Work	Sat, Sun	Work	Tue, Wed	Work	Fri, Sat	Work	Mon, Tue	Work	Thu, Fri	Work	Sun, Mon
No. of days	-	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{8}$	-

The table above shows the number of days that must elapse before the next rest day falls on Sunday again.

Number of days $=8 \times 5+2 \times 4=48$. This translates to $48 \div 7=6$ remainder 6 weeks. Thus, 7 weeks must elapse before the next rest day falls on Sunday again.
6. Since $A+17$ is a multiple of $5, A$ has remainder 3 when it is divided by 5 .

Since $A-17$ is a multiple of $6, A$ has remainder 5 when it is divided by 6 .
Let $A=5 m+3$, where m is an integer.
$5 m+3 \equiv 5(\bmod 6) \Rightarrow m \equiv 4(\bmod 6)$
Hence, $A=5 m+3=5(6 k+4)+3=30 k+23$, where k is an integer.
Thus, the largest possible value of A is $30 \times 2+23=83$.
7. Area of the shaded region is $\frac{1}{2} \times 2 \times 3=3$ units.

Case 1: Triangles of base 2 units and height 3 units, as shown in
Figure 1 . There are $4 \times 2=8$ such triangles.

Figure 1

Figure 2

Case 3: Triangles of base 3 units and height 2 units, as shown in
Figure 3 . There are $4 \times 2=8$ such triangles.
Case 2: Triangles of base 2 units and height 3 units, as shown in
Figure 2 . There are $4 \times 2=8$ such triangles.

Figure 4

Case 5: Triangles of base 2 units and height 3 units, as shown in Figure 5 . There are $2 \times 2 \times 2=8$ such triangles.

Figure 5

Case 6: Triangles of base 3 units and height 2 units, as shown in Figure 6. There are $2 \times 2 \times 2=8$ such triangles.
Case 4: Triangles of base 3 units and height 2 units, as shown in Figure 4 . There are $4 \times 2=8$ such triangles.

Figure 6

There are altogether $8+8+8+8+8+8=48$ triangles.
8. Notice that $a * b=\frac{7 a-b}{7 a+b}=1$ if and only if $b=0$. Hence, we conclude that $n^{2} * n^{3}=0$.

One also sees that $a * b=\frac{7 a-b}{7 a+b}=0$ if and only if $b=7 a$, i.e., $n^{3}=7 n^{2}$.
We conclude that $n=7$ is the only positive integer.
9. Suppose one machine from Warehouse B is sent to Factory I.

Consider the cost of (B, I) and $(A, I I)$, i.e., sending one machine from
Warehouse B to Factory I and one machine from Warehouse A to Factory II. It costs S\$135.

If we switch the job, notice that $(B, I I)$ and (A, I) only costs $S \$ 120$, a cheaper option. Hence, we conclude that all 7 machines in Warehouse B should be sent to Factory II. The total cost is $50 \times 9+100 \times 3+70 \times 7=1240$.
10. Notice that $\overline{a b}>(P(\overline{a b}))^{2}$ is only possible when $P(\overline{a b}) \leq 9$.

$P(\overline{a b})$	$\overline{a b} \leq(a b)^{2}$	Accepted	Count
9	19,33	91	1
8	$18,24,42$	81	1
7	17	71	1
6	$16,23,32$	61	1
5	15	51	1
4	14	41,22	2
3		13,31	2
2		12,21	2
1		11	1
0		$10,20, \ldots, 90$	9

There are 21 such two-digit positive integers.
11. During the first 10 minutes, car X travelled $2.5 \times \frac{1}{6}=\frac{5}{12} \mathrm{~km}$ longer than car Y. During the last 25 minutes, car X travelled $0.5 \times \frac{25}{60}=\frac{5}{24} \mathrm{~km}$ longer than car Y. As the two cars reached station B at the same time, during the in-between 5 minutes, car Y should travel $\frac{5}{12}+\frac{5}{24}=\frac{5}{8}$ km longer than car X, whereby car Y should be faster than car X by $\frac{5}{8} \div \frac{5}{60}=7.5 \mathrm{~km}$ per hour. Hence, car X decreased speed by $7.5+2.5=10 \mathrm{~km}$ per hour.
12. If $(M-13)^{2}+25-M=M+2$, we have $(M-13)^{2}=2 M-23$. Now $2 M-23$ is non-negative and we must have $M \geq 12$. Check that $M=12$ is a solution. If $(M-13)^{2}+25-M=M-2$, we have $(M-13)^{2}=2 M-27$. Similarly, one sees that $M=14$ is a solution.
We conclude that $M=12$ is the smallest positive integer satisfying the conditions.
13. If the fire station is located along the rhombus, it will travel at least $2 A B$ distance, i.e., half of the perimeter of the square, to reach the midpoint of $B C$. This is also the case if the fire station is located along the square: at least half of the perimeter of the square to reach the position which is symmetric about the centre of the square.
In conclusion, $\frac{9}{60} p \geq 2 A B=14$ and the smallest possible value of p is 94 . One may set up the fire station at point E.
14. It is easy to see that $D=9$. Refer to the fifth row where $(\overline{* 7}) \times(*)=\overline{* *}$. There are only a few possibilities: $17 \times 4=68,27 \times 2=54$, or $37,47,57,67$ multiplied by 1 .
If the divisor is 17 , then the last step gives $17 \times 7=119$. Now $C=9=D$, which is not allowed.

One may also check that the divisor cannot be 37,47,57,67. The only answer is $27 \times 527=14229$. Hence, $A+B+C+D=16$.
15. $2020 \div 5=404$

From the first circle, the students who stayed behind are $5 \times 1,5 \times 2,5 \times 3, \ldots, 5 \times 404$. They will proceed to form the second circle. $404 \div 5=80$ remainder 4
From the second circle, the students who stayed behind are
$5 \times 5 \times 1,5 \times 5 \times 2, \ldots, 5 \times 5 \times 80$. They will proceed to form the third circle.
$80 \div 5=16$
From the third circle, the students who stayed behind are $5 \times 5 \times 5 \times 1,5 \times 5 \times 5 \times 2, \ldots, 5 \times 5 \times 5 \times 16$. They will proceed to form the fourth circle.
$16 \div 5=3$ remainder 1
From the fourth circle, the students who stayed behind are
$5 \times 5 \times 5 \times 5 \times 1,5 \times 5 \times 5 \times 5 \times 2,5 \times 5 \times 5 \times 5 \times 3$
Thus, the last student who stays in the smallest circle is $5 \times 5 \times 5 \times 5 \times 3=1875$
16. Let the river flow speed be $m(\mathrm{~km} / \mathrm{h})$ and the speed of the slow ship upstream be $n(\mathrm{~km} / \mathrm{h})$. Now the speed of the fast ship in still water is $n+m(\mathrm{~km} / \mathrm{h})$.

According to the schedule, the slow ship moves upstream with speed $n(\mathrm{~km} / \mathrm{h})$ and travels 90 km . Meanwhile, the fast ship moves downstream with speed $n+2 m(\mathrm{~km} / \mathrm{h})$ and travels 180 km .

It follows that $(n+2 m)$ is twice of $n-m$. Hence, n is equal to $4 m$.

In reality, the slow ship travels 135 km . The fast ship travels with speed $n+2 m=6 m(k m / h)$ for 2 hours, and then the rest of the time with speed m $(\mathrm{km} / \mathrm{h})$. Since the total time is $\frac{135}{n-m}=\frac{135}{3 m}$, the fast ship is carried forward by the river flow for $\frac{135}{3 m}-2$ hours.

Notice that the fast ship also travels 135 km . We must have: $2(6 m)+\left(\frac{135}{3 m}-2\right) m=270-135=135$, i.e., $12 m+45-2 m=135$.

It follows that $m=9 \mathrm{~km}$ per hour.
17.

Since $[A B P]+[D P C]=\frac{1}{2} \times[A B C D]$, hence $\frac{[D P C]}{[A B C D]}=\frac{1}{2} \times \frac{2}{3+2}=\frac{1}{5}$.
Since $[A D P]+[B C P]=\frac{1}{2} \times[A B C D]$, hence, $\frac{[A D P]}{[A B C D]}=\frac{1}{2} \times \frac{3}{3+7}=\frac{3}{20}$.
Since $[A B Q]+[C D Q]=\frac{1}{2} \times[A B C D]$, hence, $\frac{[A B Q]}{[A B C D]}=\frac{1}{2} \times \frac{3}{3+5}=\frac{3}{16}$.
Since $[A D Q]+[B C Q]=\frac{1}{2} \times[A B C D]$, hence, $\frac{[B C Q]}{[A B C D]}=\frac{1}{2} \times \frac{1}{4+1}=\frac{1}{10}$.

Hence, $\frac{[A P C Q]}{[A B C D]}=1-\frac{1}{5}-\frac{3}{20}-\frac{3}{16}-\frac{1}{10}=1-\left(\frac{16+12+15+8}{80}\right)=1-\frac{51}{80}=\frac{29}{80}$.
Thus $m+n=29+80=109$.
18. Since $A+35+89=124+A$,
(i) the number below 1 is $35+89-1=123$;
(ii) the number next to 1 is $(A+124)-123-89=A-88$;
(iii) the number below 89 is $(A+124)-(A-88)-1=211$;
(iv) the number below 211 is $(A+124)-89-211=A-176$.

The sum of numbers on the diagonal is $A+(A-88)+(A-176)$, hence, $A+(A-88)+(A-176)=A+124$. Therefore, $A=194$.
19. For any three-digit number, the smallest sum of digits is 1 (for 100 only), and the largest sum of digits is 27 (for 999 only). The other possible sums of digits are $2,3,4, \ldots, 26$, and each will have at least 3 three-digit numbers. Suppose we have 27 pigeonholes as $\{1\},\{2\},\{3\}, \cdots,\{25\},\{26\},\{27\}$, the least value of n in order to get at least 3 numbers whose sum of digits are the same is $2 \times 25+2+1=53$.
20.

Area of $\triangle A D E$ is $\frac{1}{4} \times\left(\frac{52^{2}}{2}-20^{2}\right)=238 \mathrm{~cm}^{2}$.

- THE END -

BLANK PAGE

