1. Since Benjamin had 30% more beads than Chloe, the ratio of the beads they have is B: C = 13:10.

Since Benjamin had 50% fewer beads than Annie, the ratio of the beads they have is B: A = 1:2. Hence, the ratio of the beads is A: B: C = 26:13:10.

	Annie	Benjamin	Chloe
Before	26 <i>u</i>	13 <i>u</i>	10 <i>u</i>
After	26 <i>u</i> -90	13 <i>u</i> – 95	10u + 90 + 95 = 10u + 185

From the condition given, $3(13u-95)=26u-90 \Rightarrow u=15$. Thus, Chloe had 150 beads at first.

2. Since triangle *EFB* is a right-angled isosceles triangle, EF = FB = 12 cm.

Note that FC + FB = CD = 20 cm, hence FC = 20 - 12 = 8 cm and CG = CB = 12 - 8 = 4 cm.

Finally, area of the shaded region $=\frac{1}{2} \times (4+12) \times 8 = 64 \text{ cm}^2$.

3. The number of 1×1 squares is 28; the number of 2×2 squares is 17; the number of 3×3 squares is 8 and finally the number of 4×4 squares is 2. This means that there are 28 + 17 + 8 + 2 = 55 squares.

4. We know that
$$\angle GAB = \frac{5(180^{\circ})}{7}$$
 and $\angle RAB = \frac{3(180^{\circ})}{5}$, then
 $\angle GAR = \angle GAB - \angle RAB = \frac{5(180^{\circ})}{7} - \frac{3(180^{\circ})}{5} = \frac{144^{\circ}}{7}$.

Now $\angle AGR = \frac{180^{\circ} - \frac{144^{\circ}}{7}}{2} = \frac{558^{\circ}}{7} = \frac{x^{\circ}}{7}$. This implies that x = 558.

Note that $\frac{5}{3} = \frac{35}{21}$. We may suppose that there were 35u oranges and 20u apples at first. From the information, there were $35u \times \frac{4}{7} = 20u$ oranges and 14u apples in the morning. Finally, there were 20u + 60 oranges and 14u + 240 apples in the afternoon. Since the ratio of the fruits was 1:1 in the afternoon, we have 20u + 60 = 14u + 240, which implies that u = 30. Hence there were 21u = 630 apples at first.

6. Let the last digit of $1+2+3+4+\cdots+n$ be *d*. The values of *d* are shown as follows:

n	1	2	3	4	5	6	7	8	9	10)		
d	1	3	6	0	5	1	8	6	5	5	_		
									000				
n	1	1	12	13	1	4	15	16	5	17	18	19	20
d	6		8	1	5		0	6		3	1	0	0

Notice that the possible values of *d* repeat after every 20 numbers. Hence the last digit of $1+2+3+4+\cdots+n$ is 3 when $n = 2,17,22,37,\cdots$.

Note that
$$1+2=3$$
, $1+2+\dots+17 = \frac{17\times18}{2} = 153$,
 $1+2+\dots+22 = \frac{22\times23}{2} = 253$ and $1+2+\dots+37 = \frac{37\times38}{2} = 703$.

Hence, the smallest possible value of n is 37.

From the 1^{st} meeting point to the 2^{nd} meeting point, Heidi has travelled 64 + 168 = 232 m.

	Distance	Distance	Total distance travelled	
	travelled by	travelled	by both	
	George	by Heidi		
Period I:	64 m		Distance of route AB.	
Start $\rightarrow 1^{st}$ meet			, ,	×2
Period II:		232 m	Double the distance of	
1^{st} meet $\rightarrow 2^{nd}$ meet			route AB.	

Due to uniform speed, the ratio of travelling distance for Heidi in Period I and II should also be 1:2. Hence, Heidi travelled $\frac{232}{2} = 116$ m when she

first met George.

The total distance of route AB is 64 + 116 = 180 m.

8. During sunny days, team A and B would complete $\frac{1}{12}$ and $\frac{1}{15}$ of the project respectively. Team A would complete $\frac{1}{12} - \frac{1}{15} = \frac{1}{60}$ more of the job.

During rainy days, team A would complete $\frac{1}{12} \times (1-40\%) = \frac{1}{20}$ of the project per day, and team B would complete $\frac{1}{15} \times (1-10\%) = \frac{3}{50}$ of the project per day. Team B would complete $\frac{3}{50} - \frac{1}{20} = \frac{1}{100}$ more of the job.

Suppose altogether there are *m* sunny days and *n* rainy days, since both teams complete the project on the same day, $\frac{1}{60} \times m = \frac{1}{100} \times n$. This means that $m : n = \frac{1}{100} : \frac{1}{60} = 3 : 5$.

If m = 3, n = 5, team A would only complete $\frac{1}{12} \times 3 + \frac{1}{20} \times 5 = \frac{1}{2}$ of the project. Therefore, there are 10 rainy days altogether.

9. Refer to the diagram below. Let x = FI, y = IJ and z = JE.

As the ratio of the bases of rectangles is the same as the ratio of the areas of rectangles, we have

$$\begin{cases} x: (y+z) = 12: 36 = 1: 3 = 3:9\\ (x+y): z = 24: 48 = 1: 2 = 4:8 \end{cases}$$

This means that x: y: z = 3:1:8.

Note that the area of triangle *IJB*: the area of rectangle *AGFI* is 1:6, and so the area of triangle *IJB* is $\frac{1}{6}(12) = 2$ cm².

Next, the area of triangle *IJD*: the area of rectangle *DHJF* is 1:8, and so the area of triangle *IJD* is $\frac{1}{8}(24) = 3$ cm².

Finally, the area of the shaded region is 2+3=5 cm².

10. We claim that M = 963 and one possible arrangement is as follows.

		4	1	
		5	2	
+	8	7	0	
	9	6	3	

In order to obtain *M*, we have H = 9.

$$\begin{array}{c} A B \\ C D \\ + E F G \\ \hline 9 I J \\ \end{array} \begin{array}{c} A B \\ C D \\ + 8 F G \\ \hline 9 I J \\ \end{array} \begin{array}{c} A B \\ C D \\ + 8 F G \\ \hline 9 I J \\ \hline 9 I J \\ \end{array} \begin{array}{c} A B \\ C D \\ + 8 F G \\ \hline 9 I J \\ \hline 9 6 J \\ \end{array}$$

Then E = 8 or E = 7.

Suppose E = 7. Then $AB + \overline{CD} + \overline{FG} \le 84 + 63 + 52 < 200$ which means that $\overline{AB} + \overline{CD} + \overline{EFG} = 700 + (\overline{AB} + \overline{CD} + \overline{FG}) < 900$, a contradiction.

Now E = 8.

The largest number left is 7.

Suppose I = 7. Then $\overline{AB} + \overline{CD} + \overline{FG} \le 63 + 52 + 41 < 170$ which means that $\overline{AB} + \overline{CD} + \overline{EFG} = 800 + (\overline{AB} + \overline{CD} + \overline{FG}) < 970$, a contradiction.

Now I = 6 and as HIJ = 963 is possible, we need to show that $HIJ \neq 967$, 965 or 964.

Since A+B+C+D+F+G+J=0+1+2+3+4+5+7=22 and, $\overline{AB}+\overline{CD}+\overline{FG}=10(A+C+F)+(B+D+G)=9(A+C+F)+(22-J)$ and

 $\overline{AB} + \overline{CD} + \overline{FG} = 160 + J$, this means that 9(A + C + F) = 138 + 2J.

Note that 138 + 2J is not a multiple of 9 if J = 7, 5 or 4.

This completes the proof.

Suppose Justin spent *t* seconds to finish the race. Then Justin's speed is $\frac{300}{t}$ m s⁻¹. This implies that Kaden's and Leon's speeds are $\frac{288}{t}$ m s⁻¹ and $\frac{240}{t}$ m s⁻¹ respectively. From the condition, it is known that Kaden's speed is $\frac{12}{2} = 6$ m s⁻¹ and hence $\frac{288}{t} = 6 \Rightarrow t = 48$ s.

Now Leon's speed is $\frac{240}{48} = 5$ m s⁻¹ and he has to run for another $\frac{60}{5} - 2 = 10$ s when Kaden finishes the race.

- **12.** Since $\angle AOB = \angle BOC = \angle COD = \angle DOE$, every time Adrian moved to the next point on the circle, he rotated $\frac{360^{\circ} 36^{\circ}}{4} = 81^{\circ}$ relative to centre *O*. Before Adrian reached point *A* for the second time, the total angle that rotated relative to centre *O* should be a common multiple of 81^{\circ} and 360^{\circ}. The least common multiple of 81 and 360 is 40×81 . Hence, from the point *F*, Adrian reached at least 40 5 = 35 points before he got to the point *A* for the second time.
- 13. Let *a*, *b*, *c*, *d* and *e* be the 5 whole numbers such that a < b < c < d < e. Now we have $\frac{a+b+c+d}{4} = 36$, $\frac{a+b+c+e}{4} = 38$, $\frac{a+b+d+e}{4} = 39$, $\frac{a+c+d+e}{4} = 45$ and $\frac{b+c+d+e}{4} = 49$. Take the sum of these equations, we obtain a+b+c+d+e = 36+38+39+45+49=207. Now the largest whole number among these 5 numbers is *e*, which is (a+b+c+d+e)-(a+b+c+d)=207-4(36)=63.

- 14. In every minute, the minute hand moves $\frac{1}{60} \times 360^\circ = 6^\circ$ while the hour hand moves $\frac{1}{60} \times \frac{360^\circ}{12} = 0.5^\circ$. At 11 o'clock, the angle between the minute hand and the hour hand is 30°. Then *x* minutes after 11 o'clock, the angle between the minute hand and the hour hand is $30^\circ + 5.5x^\circ$. Suppose $x = x_1$ and $x = x_2$ are when the hands make an angle of 70 degrees. Then $\begin{cases} 30^\circ + 5.5x_1^\circ = 70^\circ\\ 30^\circ + 5.5x_2^\circ = 290^\circ \end{cases}$. The difference of the two equations give $5.5(x_2 - x_1) = 220$, which means that the time difference is $x_2 - x_1 = \frac{220}{5.5} = 40$.
- **15.** Join the points *A* and *F* by a line segment. Let the area of triangle *AFE* be $x \text{ cm}^2$ and the area of triangle *AFD* be $y \text{ cm}^2$. The area of the quadrilateral *AEFD* is $(x + y) \text{ cm}^2$. For two triangles with the same height, we know that the ratio of their areas is equal to the ratio of their bases.

Thus $\frac{4+x}{y} = \frac{8}{10} = \frac{4}{5}$ and $\frac{x}{y+10} = \frac{4}{8} = \frac{1}{2}$. From the second equation, y = 2x - 10, and from the first equation, 20 + 5x = 4y = 4(2x - 10), which means that $x = \frac{60}{3} = 20$ and y = 2x - 10 = 2(20) - 10 = 30.

Now x + y = 50.

16. If *k* is odd, then the number placed in the *k*th row, *k*th entry is $\frac{k(k+1)}{2}$. Note that if k = 63, the value of $\frac{k(k+1)}{2}$ is $\frac{63(64)}{2} = 2016$.

63th row 2016 64th row 2017

Therefore 2017 is placed at 64th row and 64th entry. So M = N = 64 and thus M + N = 128.

17. As $\frac{3}{10} < \frac{r}{s} < \frac{5}{16}$, we have $\frac{16r}{5} < s < \frac{10r}{3}$. If r = 1, then $3.2 = \frac{16}{5} < s < \frac{10}{3} = 3.33$, so s is not a whole number. If r = 2, then $6.4 = \frac{32}{5} < s < \frac{20}{3} = 6.67$, so s is not a whole number. If r = 3, then $9.6 = \frac{48}{5} < s < \frac{30}{3} = 10$, so s is not a whole number. If r = 4, then $12.8 = \frac{64}{5} < s < \frac{40}{3} = 13.33$, so s = 13. **18.** Suppose $13 \times N = \overline{abc2017}$. Then the last digit of *N* is 9.

Now let the second last digit of *N* be *p*. Note that $13 \times 9 = 117$. This means 13p ends in 0. So *p* is 0 (see Figure (a))

Next, let the third last digit of N be q. This means 13q ends in 9. So q is 3. (see Figure (b))

Next, let the 4th last digit of *N* be *r*. Note that $13 \times 3 = 39$. This means 13r ends in 8. So *r* is 6. (see Figure (c))

Finally, let the 5th last digit of *N* be *s*. Note that $13 \times 6 = 78$. This means 13s + 7 > 100. So *s* is 8. (see Figure (d))

Now the smallest value of *abc* is 112. (see Figure (d))

x	13 ***q09	
	117 ***	
	abc2017	

Figure (c)

	13				
Х	86309				
	117 39 78				
10)4				
abc2017					

Figure (d)

19. If statement A is true, then the sum of the digits of the block number should be a multiple of 9 and so statement C must be false. Hence statement A and C does not hold at the same time.

Since $89100 = 2^2 \times 3^4 \times 5^2 \times 11$, if the number is a factor of 89100, it should not be a multiple of 7. Hence statement *B* and *E* does not hold at the same time.

This implies that statement *D* is true. Hence the 3-digit number is k^2 for some $k = 11, 12, \dots, 31$.

Now we are left with 4 possible cases:

- (i) Statements *B*, *A* and *D* are true.
- (ii) Statements *B*, *C* and *D* are true.
- (iii) Statements *E*, *C* and *D* are true.
- (iv) Statements *E*, *A* and *D* are true.

If statement *B* is true, then the 3-digit number is $(7m)^2$ for some m = 2, 3, 4, which means that $14^2 = 196$, $21^2 = 441$ and $28^2 = 784$ are the possible 3-digit number. None of these make statements *A* or *C* true.

This means that statement *E* is true. We are left with 2 possible cases:

- (iii) Statements *E*, *C* and *D* are true.
- (iv) Statements *E*, *A* and *D* are true.

Since statements *E* and *D* are true, the 3-digit number is $(2^r \times 5^s \times 3^t)^2$ for some r, s = 0, 1 and some t = 0, 1, 2.

If the sum of the digits of the 3-digit number is not a multiple of 9, then the 3-digit number does not contain a factor of 9, which means that it must be $(2 \times 5)^2 = 100$, which means the sum of the digits is 1. Hence statement *C* is not true.

Finally, statements *E*, *A* and *D* are true and the 3-digit number is $2^2 \times 3^4 = 324$.

Figure (A)

Refer to the Figure (A) above, the sum is

$$(a+b+c)+(p+q+r)+(x+y+z)+u$$
.

We know that a + b + c = 16, p + q + r = 18 and x + y + z = 12. Hence the sum is 16 + 18 + 12 + u = 46 + u.

Note that a+b+c=16 and u+b+c=14. The difference of the equations gives $u=a-2 \le 8-2=6$. Now the desired sum is not more than 52.

The Figure (B) above shows a possible solution when the sum is 52. So the largest possible sum is 52.