1. Since Benjamin had $30 \%$ more beads than Chloe, the ratio of the beads they have is $B: C=13: 10$.

Since Benjamin had 50\% fewer beads than Annie, the ratio of the beads they have is $B: A=1: 2$.
Hence, the ratio of the beads is $A: B: C=26: 13: 10$.

|  | Annie | Benjamin | Chloe |
| :--- | :--- | :--- | :--- |
| Before | $26 u$ | $13 u$ | $10 u$ |
| After | $26 u-90$ | $13 u-95$ | $10 u+90+95=10 u+185$ |

From the condition given, $3(13 u-95)=26 u-90 \Rightarrow u=15$.
Thus, Chloe had 150 beads at first.
2. Since triangle $E F B$ is a right-angled isosceles triangle, $E F=F B=12 \mathrm{~cm}$.

Note that $F C+F B=C D=20 \mathrm{~cm}$, hence $F C=20-12=8 \mathrm{~cm}$ and $C G=C B=12-8=4 \mathrm{~cm}$.


Finally, area of the shaded region $=\frac{1}{2} \times(4+12) \times 8=64 \mathrm{~cm}^{2}$.
3. The number of $1 \times 1$ squares is 28 ; the number of $2 \times 2$ squares is 17 ; the number of $3 \times 3$ squares is 8 and finally the number of $4 \times 4$ squares is 2 . This means that there are $28+17+8+2=55$ squares.
4. We know that $\angle G A B=\frac{5\left(180^{\circ}\right)}{7}$ and $\angle R A B=\frac{3\left(180^{\circ}\right)}{5}$, then $\angle G A R=\angle G A B-\angle R A B=\frac{5\left(180^{\circ}\right)}{7}-\frac{3\left(180^{\circ}\right)}{5}=\frac{144^{\circ}}{7}$.

Now $\angle A G R=\frac{180^{\circ}-\frac{144^{\circ}}{7}}{2}=\frac{558^{\circ}}{7}=\frac{x^{\circ}}{7}$. This implies that $x=558$.
5.


Note that $\frac{5}{3}=\frac{35}{21}$. We may suppose that there were $35 u$ oranges and $20 u$ apples at first. From the information, there were $35 u \times \frac{4}{7}=20 u$ oranges and $14 u$ apples in the morning. Finally, there were $20 u+60$ oranges and $14 u+240$ apples in the afternoon. Since the ratio of the fruits was $1: 1$ in the afternoon, we have $20 u+60=14 u+240$, which implies that $u=30$. Hence there were $21 u=630$ apples at first.
6. Let the last digit of $1+2+3+4+\cdots+n$ be $d$. The values of $d$ are shown as follows:

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $d$ | 1 | 3 | 6 | 0 | 5 | 1 | 8 | 6 | 5 | 5 |


| $n$ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $d$ | 6 | 8 | 1 | 5 | 0 | 6 | 3 | 1 | 0 | 0 |

Notice that the possible values of $d$ repeat after every 20 numbers. Hence the last digit of $1+2+3+4+\cdots+n$ is 3 when $n=2,17,22,37, \cdots$.

Note that $1+2=3,1+2+\cdots+17=\frac{17 \times 18}{2}=153$,

$$
1+2+\cdots+22=\frac{22 \times 23}{2}=253 \text { and } 1+2+\cdots+37=\frac{37 \times 38}{2}=703 .
$$

Hence, the smallest possible value of $n$ is 37 .
7.


From the $1^{\text {st }}$ meeting point to the $2^{\text {nd }}$ meeting point, Heidi has travelled $64+168=232 \mathrm{~m}$.

|  | Distance <br> travelled by <br> George | Distance <br> travelled <br> by Heidi | Total distance travelled <br> by both |
| :--- | :--- | :--- | :--- |
| Period I: <br> Start $\rightarrow 1^{\text {st }}$ meet | 64 m |  | Distance of route $A B$. |
| Period II: <br> $1^{\text {st }}$ meet $\rightarrow 2^{\text {nd }}$ meet |  | 232 m | Double the distance of <br> route $A B$. |

Due to uniform speed, the ratio of travelling distance for Heidi in Period I and II should also be 1:2. Hence, Heidi travelled $\frac{232}{2}=116 \mathrm{~m}$ when she first met George.

The total distance of route $A B$ is $64+116=180 \mathrm{~m}$.
8. During sunny days, team $A$ and $B$ would complete $\frac{1}{12}$ and $\frac{1}{15}$ of the project respectively. Team A would complete $\frac{1}{12}-\frac{1}{15}=\frac{1}{60}$ more of the job.

During rainy days, team $A$ would complete $\frac{1}{12} \times(1-40 \%)=\frac{1}{20}$ of the project per day, and team $B$ would complete $\frac{1}{15} \times(1-10 \%)=\frac{3}{50}$ of the project per day. Team $B$ would complete $\frac{3}{50}-\frac{1}{20}=\frac{1}{100}$ more of the job.

Suppose altogether there are $m$ sunny days and $n$ rainy days, since both teams complete the project on the same day, $\frac{1}{60} \times m=\frac{1}{100} \times n$. This means that $m: n=\frac{1}{100}: \frac{1}{60}=3: 5$.
If $m=3, n=5$, team $A$ would only complete $\frac{1}{12} \times 3+\frac{1}{20} \times 5=\frac{1}{2}$ of the project. Therefore, there are 10 rainy days altogether.
9. Refer to the diagram below. Let $x=F I, y=I J$ and $z=J E$.


As the ratio of the bases of rectangles is the same as the ratio of the areas of rectangles, we have

$$
\left\{\begin{array}{l}
x:(y+z)=12: 36=1: 3=3: 9 \\
(x+y): z=24: 48=1: 2=4: 8
\end{array} .\right.
$$

This means that $x: y: z=3: 1: 8$.
Note that the area of triangle $/ J B$ : the area of rectangle $A G F /$ is $1: 6$, and so the area of triangle $I J B$ is $\frac{1}{6}(12)=2 \mathrm{~cm}^{2}$.

Next, the area of triangle IJD: the area of rectangle DHJF is $1: 8$, and so the area of triangle $I J D$ is $\frac{1}{8}(24)=3 \mathrm{~cm}^{2}$.

Finally, the area of the shaded region is $2+3=5 \mathrm{~cm}^{2}$.
10. We claim that $M=963$ and one possible arrangement is as follows.


In order to obtain $M$, we have $H=9$.


Then $E=8$ or $E=7$.
Suppose $E=7$. Then $\overline{A B}+\overline{C D}+\overline{F G} \leq 84+63+52<200$ which means that $\overline{A B}+\overline{C D}+\overline{E F G}=700+(\overline{A B}+\overline{C D}+\overline{F G})<900$, a contradiction.

Now $E=8$.
The largest number left is 7 .
Suppose $I=7$. Then $\overline{A B}+\overline{C D}+\overline{F G} \leq 63+52+41<170$ which means that $\overline{A B}+\overline{C D}+\overline{E F G}=800+(\overline{A B}+\overline{C D}+\overline{F G})<970$, a contradiction.

Now $I=6$ and as $\overline{H I J}=963$ is possible, we need to show that $\overline{H I J} \neq 967$, 965 or 964.

Since $A+B+C+D+F+G+J=0+1+2+3+4+5+7=22$ and, $\overline{A B}+\overline{C D}+\overline{F G}=10(A+C+F)+(B+D+G)=9(A+C+F)+(22-J)$ and
$\overline{A B}+\overline{C D}+\overline{F G}=160+J$, this means that $9(A+C+F)=138+2 J$.
Note that $138+2 J$ is not a multiple of 9 if $J=7,5$ or 4 .
This completes the proof.
11.


Suppose Justin spent $t$ seconds to finish the race. Then Justin's speed is $\frac{300}{t} \mathrm{~m} \mathrm{~s}^{-1}$. This implies that Kaden's and Leon's speeds are $\frac{288}{t} \mathrm{~m} \mathrm{~s}^{-1}$ and $\frac{240}{t} \mathrm{~m} \mathrm{~s}^{-1}$ respectively. From the condition, it is known that Kaden's speed is $\frac{12}{2}=6 \mathrm{~m} \mathrm{~s}^{-1}$ and hence $\frac{288}{t}=6 \Rightarrow t=48 \mathrm{~s}$.

Now Leon's speed is $\frac{240}{48}=5 \mathrm{~m} \mathrm{~s}^{-1}$ and he has to run for another $\frac{60}{5}-2=10$ s when Kaden finishes the race.
12. Since $\angle A O B=\angle B O C=\angle C O D=\angle D O E$, every time Adrian moved to the next point on the circle, he rotated $\frac{360^{\circ}-36^{\circ}}{4}=81^{\circ}$ relative to centre $O$. Before Adrian reached point $A$ for the second time, the total angle that rotated relative to centre $O$ should be a common multiple of $81^{\circ}$ and $360^{\circ}$. The least common multiple of 81 and 360 is $40 \times 81$. Hence, from the point $F$, Adrian reached at least $40-5=35$ points before he got to the point $A$ for the second time.
13. Let $a, b, c, d$ and $e$ be the 5 whole numbers such that $a<b<c<d<e$. Now we have $\frac{a+b+c+d}{4}=36, \frac{a+b+c+e}{4}=38, \frac{a+b+d+e}{4}=39$, $\frac{a+c+d+e}{4}=45$ and $\frac{b+c+d+e}{4}=49$. Take the sum of these equations, we obtain $a+b+c+d+e=36+38+39+45+49=207$. Now the largest whole number among these 5 numbers is $e$, which is $(a+b+c+d+e)-(a+b+c+d)=207-4(36)=63$.
14. In every minute, the minute hand moves $\frac{1}{60} \times 360^{\circ}=6^{\circ}$ while the hour hand moves $\frac{1}{60} \times \frac{360^{\circ}}{12}=0.5^{\circ}$. At 11 o'clock, the angle between the minute hand and the hour hand is $30^{\circ}$. Then $x$ minutes after 11 o'clock, the angle between the minute hand and the hour hand is $30^{\circ}+5.5 x^{\circ}$.

Suppose $x=x_{1}$ and $x=x_{2}$ are when the hands make an angle of 70 degrees. Then $\left\{\begin{array}{c}30^{\circ}+5.5 x_{1}^{\circ}=70^{\circ} \\ 30^{\circ}+5.5 x_{2}^{\circ}=290^{\circ}\end{array}\right.$. The difference of the two equations give $5.5\left(x_{2}-x_{1}\right)=220$, which means that the time difference is $x_{2}-x_{1}=\frac{220}{5.5}=40$.
15. Join the points $A$ and $F$ by a line segment. Let the area of triangle $A F E$ be $x \mathrm{~cm}^{2}$ and the area of triangle $A F D$ be $y \mathrm{~cm}^{2}$. The area of the quadriateral $A E F D$ is $(x+y) \mathrm{cm}^{2}$. For two triangles with the same height, we know that the ratio of their areas is equal to the ratio of their bases.

Thus $\frac{4+x}{y}=\frac{8}{10}=\frac{4}{5}$ and $\frac{x}{y+10}=\frac{4}{8}=\frac{1}{2}$. From the second equation, $y=2 x-10$, and from the first equation, $20+5 x=4 y=4(2 x-10)$, which means that $x=\frac{60}{3}=20$ and $y=2 x-10=2(20)-10=30$.

Now $x+y=50$.

16. If $k$ is odd, then the number placed in the $k^{\text {th }}$ row, $k^{\text {th }}$ entry is $\frac{k(k+1)}{2}$. Note that if $k=63$, the value of $\frac{k(k+1)}{2}$ is $\frac{63(64)}{2}=2016$.


Therefore 2017 is placed at $64^{\text {th }}$ row and $64^{\text {th }}$ entry. So $M=N=64$ and thus $M+N=128$.
17. As $\frac{3}{10}<\frac{r}{s}<\frac{5}{16}$, we have $\frac{16 r}{5}<s<\frac{10 r}{3}$.

If $r=1$, then $3.2=\frac{16}{5}<s<\frac{10}{3}=3.33$, so $s$ is not a whole number.
If $r=2$, then $6.4=\frac{32}{5}<s<\frac{20}{3}=6.67$, so $s$ is not a whole number.
If $r=3$, then $9.6=\frac{48}{5}<s<\frac{30}{3}=10$, so $s$ is not a whole number.
If $r=4$, then $12.8=\frac{64}{5}<s<\frac{40}{3}=13.33$, so $s=13$.
18. Suppose $13 \times N=\overline{a b c 2017}$. Then the last digit of $N$ is 9 .

Now let the second last digit of $N$ be $p$. Note that $13 \times 9=117$. This means $13 p$ ends in 0 . So $p$ is 0 (see Figure (a))

Next, let the third last digit of $N$ be $q$. This means $13 q$ ends in 9 . So $q$ is 3 . (see Figure (b))

Next, let the $4^{\text {th }}$ last digit of $N$ be $r$. Note that $13 \times 3=39$. This means 13 rends in 8 . So $r$ is 6 . (see Figure (c))

Finally, let the $5^{\text {th }}$ last digit of $N$ be $s$. Note that $13 \times 6=78$. This means $13 s+7>100$. So $s$ is 8 . (see Figure (d))

Now the smallest value of $\overline{a b c}$ is 112 . (see Figure (d))


Figure (b)


Figure (c)


Figure (d)
19. If statement $A$ is true, then the sum of the digits of the block number should be a multiple of 9 and so statement $C$ must be false. Hence statement $A$ and $C$ does not hold at the same time.

Since $89100=2^{2} \times 3^{4} \times 5^{2} \times 11$, if the number is a factor of 89100 , it should not be a multiple of 7 . Hence statement $B$ and $E$ does not hold at the same time.

This implies that statement $D$ is true. Hence the 3 -digit number is $k^{2}$ for some $k=11,12, \cdots, 31$.

Now we are left with 4 possible cases:
(i) Statements $B, A$ and $D$ are true.
(ii) Statements $B, C$ and $D$ are true.
(iii) Statements $E, C$ and $D$ are true.
(iv) Statements $E, A$ and $D$ are true.

If statement $B$ is true, then the 3 -digit number is $(7 m)^{2}$ for some $m=2,3,4$, which means that $14^{2}=196,21^{2}=441$ and $28^{2}=784$ are the possible 3digit number. None of these make statements $A$ or $C$ true.

This means that statement $E$ is true. We are left with 2 possible cases:
(iii) Statements $E, C$ and $D$ are true.
(iv) Statements $E, A$ and $D$ are true.

Since statements $E$ and $D$ are true, the 3-digit number is $\left(2^{r} \times 5^{s} \times 3^{t}\right)^{2}$ for some $r, s=0,1$ and some $t=0,1,2$.

If the sum of the digits of the 3 -digit number is not a multiple of 9 , then the 3 -digit number does not contain a factor of 9 , which means that it must be $(2 \times 5)^{2}=100$, which means the sum of the digits is 1 . Hence statement $C$ is not true.

Finally, statements $E, A$ and $D$ are true and the 3 -digit number is $2^{2} \times 3^{4}=324$.
20. The sum is 52 .


Figure (A)


Figure (B)

Refer to the Figure (A) above, the sum is

$$
(a+b+c)+(p+q+r)+(x+y+z)+u
$$

$W e$ know that $a+b+c=16, p+q+r=18$ and $x+y+z=12$. Hence the sum is $16+18+12+u=46+u$.

Note that $a+b+c=16$ and $u+b+c=14$. The difference of the equations gives $u=a-2 \leq 8-2=6$. Now the desired sum is not more than 52.

The Figure (B) above shows a possible solution when the sum is 52 . So the largest possible sum is 52 .

